Банк ЕГЭ профиль
Скрыть/развернуть все

«16. Планиметрия»



Задача №518
Сложность: 54 %

В трапеции \(ABCD\) с прямым углом \(A\) расположены две окружности. Одна из них касается меньшего основания \(BC\) и боковых сторон, а другая – большего основания \(AD\), боковых сторон и первой окружности. Прямая, проходящая через центры окружностей, пересекает большее основание в точке \(P\).


а) Докажите, что \(AP:PD=\sin D\);
б) Найдите площадь трапеции, если радиусы окружностей 1 и 3.

Задача №1052
Сложность: 60 %

В равнобедренной трапеции \(ABCD\) основание \(AD\) в три раза больше основания \(BC\).

а) Докажите, что высота \(CH\) трапеции разбивает основание \(AD\) на отрезки, один из которых вдвое больше другого.

б) Найдите расстояние от вершины \(C\) до середины диагонали \(BD\), если \(AD=18\) и \(AC=4\sqrt{13}\)

Задача №384
Сложность: 61 %

В равнобедренной трапеции \(ABCD\) основание \(AD\) в три раза больше основания \(BC\).

а) Докажите, что высота \(CH\) трапеции разбивает основание \(AD\) на отрезки, один из которых вдвое больше другого.

б) Найдите расстояние от вершины \(C\) до середины диагонали \(BD\), если \(AD=36\) и \(AC=26\).

Задача №1105
Сложность: 61 %

Высоты тупоугольного треугольника \(ABC\) с тупым углом \(ABC\) пересекаются в точке \(H\). Угол \(AHC\) равен 60°.

а) Докажите, что угол \(ABC\) равен 120°.

б) Найдите \(BH\), если \(AB=6\), \(BC=10\).

 

Задача №1056
Сложность: 62 %

 В выпуклом четырёхугольнике \(ABCD\) известны стороны и диагональ: AB = 3, BC = CD = 5, AD = 8, AC = 7.

а) Докажите, что вокруг этого четырёхугольника можно описать окружность.

б) Найдите BD.

Задача №1087
Сложность: 62 %

Высоты тупоугольного треугольника \(ABC\) с тупым углом \(ABC\) пересекаются в точке \(H\). Угол \(AHC\) равен 60°.

а) Докажите, что угол \(ABC\) равен 120°.

б) Найдите \(BH\), если \(AB=7\), \(BC=8\).

 

Задача №2453
Сложность: 65 %

Две окружности касаются внешним образом в точке C. Прямая касается меньшей окружности в точке A, а большей — в точке B, отличной от A. Прямая AC второй раз пересекает большую окружность в точке D, прямая BC второй раз пересекает меньшую окружность в точке E.
а) Докажите, что прямая AE параллельна прямой BD.
б) Пусть L — отличная от D точка пересечения отрезка DE с большей окружностью. Найдите EL, если радиусы окружностей равны 2 и 5.

Задача №3059
Сложность: 65 %

Диагонали трапеции ABCD с основаниями AD и BC пересекаются в точке M. Окружность, описанная около треугольника CDM, пересекает отрезок AD в точке N и касается прямой BN.
а) Докажите, что треугольники BNC и CDN подобны.
б) Найдите AD, если CD=24, ∠BCD=∠DMA, а радиус окружности равен 13.

Задача №525
Сложность: 66 %

В прямоугольном треугольнике \(ABC\) угол при вершине \(A\) равен 30°. Точка \(D\) – середина гипотенузы \(AB\). Окружности, вписанные в треугольники \(ADC\) и \(BDC\) касаются сторон \(AC\) и \(BC\) в точках \(K\) и \(P\) соответственно.
а) Докажите, что \(KP\) равно \(CD\).
б) Найдите, в каком отношении делит гипотенузу \(AB\) точка касания большей из этих окружностей, считая от вершины \(A\).

Ответ запишите в виде несрократимого отношения без пробелов, например "4:13".

Задача №2886
Сложность: 66 %

Дана трапеция ABCD с основаниями BC и AD. Точки M и N являются серединами сторон AB и CD соответственно. Окружность, проходящая через точки B и С, пересекает отрезки BM и CN в точках P и Q (отличных от концов отрезков).
а) Докажите, что точки M, N, P и Q лежат на одной окружности.
​б) Найдите радиус окружности, описанной около треугольника MPQ, если прямая DP перпендикулярна прямой PC, AB = 25, BC = 3, CD = 28, AD = 20.

Задача №573
Сложность: 69 %

На катетах AC и BC прямоугольного треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M – середина гипотенузы AB, Н – точка пересечения прямых CM и DK.

а) Докажите, что CM⊥DK.

б) Найдите MH, если катеты AC=3, BC=4.

Задача №3262
Сложность: 69 %

Дана трапеция ABCD с основаниями BC и AD. Точки M и N являются серединами сторон AB и CD соответственно. Окружность, проходящая через точки B и С, пересекает отрезки BM и CN в точках P и Q (отличных от концов отрезков).
а) Докажите, что точки M, N, P и Q лежат на одной окружности.
б) Найдите QN, если отрезки DP и PC перпендикулярны, AB = 21, BC = 4, CD = 20, AD = 17

Задача №3027
Сложность: 70 %

Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC = CD.
а) Докажите, что AB : BC = AP : PD.
б) Найдите площадь треугольника COD, где O - центр окружности, вписанной в треугольник ABD, если дополнительно известно, что BD - диаметр описанной около четырёхугольника ABCD окружности, AB = \(5\), а BC = \(5\sqrt{2}\).

Задача №414
Сложность: 74 %

В трапеции \(ABCD\) с прямым углом \(A\) расположены две окружности. Одна из них касается меньшего основания \(BC\) и боковых сторон, а другая – большего основания \(AD\), боковых сторон и первой окружности. Прямая, проходящая через центры окружностей, пересекает большее основание в точке \(P\).


а) Докажите, что \(AP:PD=\sin D\);
б) Найдите площадь трапеции, если радиусы окружностей \(\dfrac13\) и \(\dfrac43\).

Задача №2914
Сложность: 80 %

Дана равнобедренная трапеция \(ABCD\) с основаниями \(AD\) и \(BC\). Окружность с центром \(O\), построенная на боковой стороне \(AB\) как на диаметре, касается боковой стороны \(CD\) и второй раз пересекает большее основание \(AD\) в точке \(H\), точка \(Q\) - середина \(CD\).

А) Докажите, что четырехугольник \(DQOH\) - параллелограмм.

Б) Найдите \(AD\), если \(\angle{BAD} = 75\) и \(BC = 1\).

Задача №3026
Сложность: 80 %

К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно.
а) Докажите, что периметр треугольника AMN равен стороне квадрата.
б) Прямая MN пересекает прямую CD в точке P. В каком отношении делит сторону BC прямая, проходящая через точку P и центр окружности, если AM : MB = 1 : 2?

Задача №790
Сложность: 90 %

Точка O — центр описанной около треугольника ABC окружности, точка I — центр вписанной в этот треугольник окружности, точка H — точка пересечения высот треугольника ABC. Известно, что ∠BAC=∠OBC+∠OCB.
а) Докажите, что точка I лежит на окружности, описанной около треугольника BOC.
б) Найдите угол OIH, если ∠ABC=75°

2019 ©, ИП Иванов Дмитрий Михайлович