Задачи ЕГЭ профиль
Скрыть/развернуть все

« Смешанные уравнения»


Задача №5250
Сложность: 40 % !

а) Решите уравнение \(125^{\sin^2{x}}=(\sqrt{5})^{5\sin{2x}}\cdot0{,}2\)

б) Найдите все корни этого уравнения, принадлежащие промежутку \([-3\pi;-2\pi]\)

 

​​Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.
а)

1. \(\pi n,\; n\in\mathbb{Z}\) 2. \(\dfrac{\pi}{6}+\pi n,\; n\in\mathbb{Z}\) 3. \(\dfrac{\pi}{4}+\pi n,\; n\in\mathbb{Z}\) 4. \(\dfrac{\pi}{3}+\pi n,\; n\in\mathbb{Z}\)
5. \(\dfrac{\pi}{2}+\pi n,\; n\in\mathbb{Z}\) 6. \(\dfrac{2\pi}{3}+\pi n,\; n\in\mathbb{Z}\) 7. \(\dfrac{3\pi}{4}+\pi n,\; n\in\mathbb{Z}\) 8. \(\dfrac{5\pi}{6}+\pi n,\; n\in\mathbb{Z}\)
9. \(\mathrm{arctg\,}\dfrac15+\pi n,\; n\in\mathbb{Z}\) 10. \(\mathrm{arctg\,}\dfrac14+\pi n,\; n\in\mathbb{Z}\) 11. \(\mathrm{arctg\,}\dfrac13+\pi n,\; n\in\mathbb{Z}\) 12. \(\mathrm{arctg\,}\dfrac12+\pi n,\; n\in\mathbb{Z}\)
13. \(-\mathrm{arctg\,}\dfrac15+\pi n,\; n\in\mathbb{Z}\) 14. \(-\mathrm{arctg\,}\dfrac14+\pi n,\; n\in\mathbb{Z}\) 15. \(-\mathrm{arctg\,}\dfrac13+\pi n,\; n\in\mathbb{Z}\) 16. \(-\mathrm{arctg\,}\dfrac12+\pi n,\; n\in\mathbb{Z}\)

б)

17. \(-3\pi\) 18. \(-\dfrac{17\pi}{6}\) 19. \(-\dfrac{11\pi}{4}\) 20. \(-\dfrac{8\pi}{3}\)
21. \(-\dfrac{6\pi}{2}\) 22. \(-\dfrac{7\pi}{3}\) 23. \(-\dfrac{9\pi}{4}\) 24. \(-\dfrac{13\pi}{6}\)
25. \(-2\pi\) 26. \(\mathrm{arctg\,}\dfrac15-3\pi\) 27. \(\mathrm{arctg\,}\dfrac14-3\pi\) 28. \(\mathrm{arctg\,}\dfrac13-3\pi\)
29. \(\mathrm{arctg\,}\dfrac12-3\pi\) 30. \(-\mathrm{arctg\,}\dfrac15-2\pi\) 31. \(-\mathrm{arctg\,}\dfrac14-2\pi\) 32. \(-\mathrm{arctg\,}\dfrac13-2\pi\)
33. \(-\mathrm{arctg\,}\dfrac12-2\pi\)      
Задача №5231
Сложность: 46 % !

а) Решите уравнение \(8^{\cos^2{x}}=\left(\sqrt{2}\right)^{5\sin{2x}}\cdot0{,}5\)
б) Найдите все корни этого уравнения, принадлежащие промежутку \(\left[\dfrac{5\pi}{2};4\pi\right]\)

​​Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.
а)

1. \(\pi n,\; n\in\mathbb{Z}\) 2. \(\dfrac{\pi}{6}+\pi n,\; n\in\mathbb{Z}\) 3. \(\dfrac{\pi}{4}+\pi n,\; n\in\mathbb{Z}\) 4. \(\dfrac{\pi}{3}+\pi n,\; n\in\mathbb{Z}\)
5. \(\dfrac{\pi}{2}+\pi n,\; n\in\mathbb{Z}\) 6. \(\dfrac{2\pi}{3}+\pi n,\; n\in\mathbb{Z}\) 7. \(\dfrac{3\pi}{4}+\pi n,\; n\in\mathbb{Z}\) 8. \(\dfrac{5\pi}{6}+\pi n,\; n\in\mathbb{Z}\)
9. \(\mathrm{arctg\,}2+\pi n,\; n\in\mathbb{Z}\) 10. \(\mathrm{arctg\,}3+\pi n,\; n\in\mathbb{Z}\) 11. \(\mathrm{arctg\,}4+\pi n,\; n\in\mathbb{Z}\) 12. \(\mathrm{arctg\,}5+\pi n,\; n\in\mathbb{Z}\)
13. \(-\mathrm{arctg\,}2+\pi n,\; n\in\mathbb{Z}\) 14. \(-\mathrm{arctg\,}3+\pi n,\; n\in\mathbb{Z}\) 15. \(-\mathrm{arctg\,}4+\pi n,\; n\in\mathbb{Z}\) 16. \(-\mathrm{arctg\,}5+\pi n,\; n\in\mathbb{Z}\)

б)

17. \(\dfrac{5\pi}{2}\) 18. \(\dfrac{8\pi}{3}\) 19. \(\dfrac{11\pi}{4}\) 20. \(\dfrac{17\pi}{6}\)
21. \(3\pi\) 22. \(\dfrac{19\pi}{6}\) 23. \(\dfrac{13\pi}{4}\) 24. \(\dfrac{10\pi}{3}\)
25. \(\dfrac{7\pi}{2}\) 26. \(\dfrac{11\pi}{3}\) 27. \(\dfrac{15\pi}{4}\) 28. \(\dfrac{23\pi}{6}\)
29. \(4\pi\) 30. \(\mathrm{arctg\,}2+3\pi\) 31. \(\mathrm{arctg\,}3+3\pi\) 32. \(\mathrm{arctg\,}4+3\pi\)
33. \(-\mathrm{arctg\,}2+4\pi\) 34. \(-\mathrm{arctg\,}3+4\pi\) 35. \(-\mathrm{arctg\,}4+4\pi\)  

 

Задача №3278
Сложность: 47 % !

а) Решите уравнение \(\log_4(4x-1)\cdot \log_{4x-1}16=x^2+3x\).
б) Найдите все его корни, принадлежащие промежутку \([\log_62;\log_78]\).

Задача №3759
Сложность: 54 % !

а) Решите уравнение \(\dfrac{\log^2_{2}{(\sin{x})} + \log_{2}{(\sin{x})}}{2\cos{x} - \sqrt{3}} = 0\).

б) Найдите все корни этого уравнения, принадлежащие отрезку \(\left[\dfrac{\pi}{2}; 2\pi \right]\).

Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.

а)

1. 2πn, n∈Z 2. π/6+2πn, n∈Z 3. π/4+2πn, n∈Z 4. π/3+2πn, n∈Z
5. π/2+2πn, n∈Z  6. 2π/3+2πn, n∈Z 7. 3π/4+2πn, n∈Z 8. 5π/6+2πn, n∈Z
9. π+2πn, n∈Z 10. -π/6+2πn, n∈Z 11. -π/4+2πn, n∈Z 12. -π/3+2πn, n∈Z
13. -π/2+2πn, n∈Z 14. -2π/3+2πn, n∈Z 15. -3π/4+2πn, n∈Z 16. -5π/6+2πn, n∈Z

б)

17. π/2 18. 2π/3 19. 3π/4 20. 5π/6
21. π 22. 7π/6 23. 5π/4 24. 4π/3
25. 3π/2 26. 5π/3 27. 7π/4 28. 11π/6
29. 2π 30.13π/6 31. 9π/4 32.  7π/2
Задача №4060
Сложность: 55 % !

а) Решите уравнение \(4\cdot 16^{\cos x}-9\cdot 4^{\cos x}+2=0\).

б) Найдите все корни этого уравнения, принадлежащие отрезку \(\left[ -2\pi;-\dfrac{\pi}2\right]\).

 

Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.

а)

1. 2πn, n∈Z 2. π/6+2πn 3. π/4+2πn, n∈Z 4. π/3+2πn, n∈Z
5. π/2+2πn, n∈Z  6. 2π/3+2πn, n∈Z 7. 3π/4+2πn, n∈Z 8. 5π/6+2πn, n∈Z
9. π+2πn, n∈Z 10. -π/6+2πn, n∈Z 11. -π/4+2πn, n∈Z 12. -π/3+2πn, n∈Z
13. -π/2+2πn, n∈Z 14. -2π/3+2πn, n∈Z 15. -3π/4+2πn, n∈Z 16. -5π/6+2πn, n∈Z

б)

17. -2π 18. -11π/6 19. -7π/4 20. -5π/3
21. -3π/2 22. -4π/3 23. -5π/4 24. -7π/6
25. -π 26. -5π/6 27. -3π/4 28. -2π/3
29. -π/2      

 

Задача №1034
Сложность: 63 % !

а) Решите уравнение \( 4^{\sin x}+4^{\sin(x+\pi)}=\dfrac{5}{2} \).

б) Укажите корни этого уравнения, принадлежащие отрезку \(\Big[ \dfrac{5\pi}{2};4\pi\Big]\).

Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.

а)

1. 2πn, n∈Z 2. π/6+2πn 3. π/4+2πn, n∈Z 4. π/3+2πn, n∈Z
5. π/2+2πn, n∈Z  6. 2π/3+2πn, n∈Z 7. 3π/4+2πn, n∈Z 8. 5π/6+2πn, n∈Z
9. π+2πn, n∈Z 10. -π/6+2πn, n∈Z 11. -π/4+2πn, n∈Z 12. -π/3+2πn, n∈Z
13. -π/2+2πn, n∈Z 14. -2π/3+2πn, n∈Z 15. -3π/4+2πn, n∈Z 16. -5π/6+2πn, n∈Z

б)

17. 5π/2 18. 8π/3 19. 11π/4 20. 17π/6
21. 3π 22. 19π/6 23. 13π/4 24. 10π/3
25. 7π/2 26. 11π/3 27. 15π/4 28. 23π/6
29. 4π      

 

Задача №3276
Сложность: 65 % !

а) Решите уравнение \(\left(16^{\sin{x}}\right)^{\cos{x}} = \left(\dfrac{1}{4}\right)^{\sqrt{3}\sin{x}}\).

б) Найдите все корни этого уравнения, принадлежащие отрезку \(\left[2\pi; \dfrac{7\pi}{2}\right]\).

Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.

а) 

1. 2πn, n∈Z 2. π/6+2πn 3. π/4+2πn, n∈Z 4. π/3+2πn, n∈Z
5. π/2+2πn, n∈Z  6. 2π/3+2πn, n∈Z 7. 3π/4+2πn, n∈Z 8. 5π/6+2πn, n∈Z
9. π+2πn, n∈Z 10. -π/6+2πn, n∈Z 11. -π/4+2πn, n∈Z 12. -π/3+2πn, n∈Z
13. -π/2+2πn, n∈Z 14. -2π/3+2πn, n∈Z 15. -3π/4+2πn, n∈Z 16. -5π/6+2πn, n∈Z

б)

17. 2π 18. 8π/3 19. 11π/4 20. 17π/6
21. 3π 22. 19π/6 23. 13π/4 24. 10π/3
25. 7π/2 26. 11π/3 27. 15π/4 28. 23π/6
29. 4π      
Задача №1310
Сложность: 66 % !

а) Решите уравнение \(\Big(\dfrac{1}{16}\Big) ^{\cos x} + 3⋅\Big(\dfrac{1}{4}\Big)^{\cos x} – 4 = 0\)

б) Найдите все корни этого уравнения, принадлежащие отрезку \([4\pi; 7\pi]\)

Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.

а)

1. 2πn, n∈Z 2. π/6+2πn 3. π/4+2πn, n∈Z 4. π/3+2πn, n∈Z
5. π/2+2πn, n∈Z  6. 2π/3+2πn, n∈Z 7. 3π/4+2πn, n∈Z 8. 5π/6+2πn, n∈Z
9. π+2πn, n∈Z 10. -π/6+2πn, n∈Z 11. -π/4+2πn, n∈Z 12. -π/3+2πn, n∈Z
13. -π/2+2πn, n∈Z 14. -2π/3+2πn, n∈Z 15. -3π/4+2πn, n∈Z 16. -5π/6+2πn, n∈Z

б)

17. 4π 18. 25π/6 19. 9π/2 20. 19π/4
21. 5π 22. 31π/6 23. 21π/4 24. 11π/2
25. 17π/3 26. 23π/4 27. 35π/6 28. 17π/4
29. 19π/3 30. 13π/2 31. 19π/4 32. 7π

 

Задача №542
Сложность: 67 % !

a) Решите уравнение \(169^{\cos^2x}=13^{\sqrt2\cos x}\).

б) Найдите все корни этого уравнения, принадлежащие отрезку [2π;3π].

Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.

а)

1. 2πn, n∈Z 2. π/6+2πn, n∈Z 3. π/4+2πn, n∈Z 4. π/3+2πn, n∈Z
5. π/2+2πn, n∈Z  6. 2π/3+2πn, n∈Z 7. 3π/4+2πn, n∈Z 8. 5π/6+2πn, n∈Z
9. π+2πn, n∈Z 10. -π/6+2πn, n∈Z 11. -π/4+2πn, n∈Z 12. -π/3+2πn, n∈Z
13. -π/2+2πn, n∈Z 14. -2π/3+2πn, n∈Z 15. -3π/4+2πn, n∈Z 16. -5π/6+2πn, n∈Z

б)

17. 2π 18. 13π/6 19. 9π/4 20. 7π/3
21. 5π/2 22. 8π/3 23. 11π/4 24. 17π/6
25. 3π 26. 11π/6 27. 7π/4 28. 5π/3
29. 3π/2      
Задача №370
Сложность: 68 % !

а) Решите уравнение \( 9^{\sin x}+9^{\sin(x+\pi)}=\dfrac{10}{3} \).

б) Укажите корни этого уравнения, принадлежащие отрезку \(\Big[ -\dfrac{7\pi}{2};-2\pi\Big]\).

Ответ запишите в виде двузначного числа, где первая цифра соответствует ответу на пункт "а", а вторая – ответу на пункт "б".

а) 1. \(±\dfrac{\pi}{6}+2\pi n,\, n\in\mathbb{Z}\)

2. \(\dfrac{\pi}{6}+\pi n,\, n\in\mathbb{Z}\)

3. \(±\dfrac{\pi}{6}+\pi n,\, n\in\mathbb{Z}\)

4. \(\dfrac{\pi}{6}+2\pi n,\, n\in\mathbb{Z}; \dfrac{5\pi}{6}+2\pi k,\, k\in\mathbb{Z}\)

б) 1. -19π/6; -17π/6; -13π/6

2. -19π/6

3. -13π/6

4. -19π/6; -13π/6

2020 ©, ИП Иванов Дмитрий Михайлович