Сайт подготовки к экзаменам Uchus.online

36 вариантов ЕГЭ 2022

1 вариант ЕГЭ Ященко 2022

1 вариант ЕГЭ Ященко 2022 (сборник 36 вариантов)
Открыть тест отдельно

Найдите корень уравнения \(4^{5x+2}=0{,}8\cdot 5^{5x+2}\)

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме "Тригонометрия", равна 0,1. Вероятность того, что это вопрос по теме "Внешние углы", равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

В тупоугольном треугольнике ABC известно, что AC=BC=10, высота AH равна √51. Найдите косинус угла ACB.

Найдите значение выражения \(\dfrac{5\sin61°}{\sin299°}\)

Цилиндр вписан в правильную четырехугольную призму. Радиус основания и высота цилиндра равны 3. Найдите площадь боковой поверхности призмы.

На рисунке изображен график \(y=f(x)\). На оси абсцисс отмечены точки -2, -1, 1, 2. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.

При температуре \(0°C\) рельс имеет длину \(l_0 = 10\)м. При возрастании температуры происходит тепловое расширение рельса, и его длина, выраженная в метрах, меняется по закону \(l(t°) = l_0(1 + a ⋅ t°)\), где \(a = 1{,}2\cdot 10^{-5}(°C)^{-1}\) – коэффициент теплового расширения, \(t°\) – температура (в градусах Цельсия). При какой температуре рельс удлинится на 6 мм? Ответ выразите в градусах Цельсия.

Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 105 км. На следующий день он отправился обратно со скоростью на 7 км/ч больше прежней. По дороге он сделал остановку на 4 часа. В результате он затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из В в А. Ответ дайте в км/ч.

На рисунке изображен график функции \(f(x)=ax^2+bx+c\), где числа \(a\), \(b\) и \(c\) – целые. Найдите \(f(-5)\).

Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 30% этих стекол, вторая — 70%. Среди стекол, выпущенных на первой фабрике, 5% бракованные, а на второй — 4% бракованные. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Найдите наименьшее знаение функции \(y=\dfrac43x\sqrt{x}-3x+9\) на отрезке \([0{,}25;30]\)

а) Решите уранение \(2\sin^3(\pi+x)=\dfrac12\cos\left(x-\dfrac{3\pi}{2}\right)\)
б) Найдите все корни этого уравнения, принадлежащие отрезку \(\left[-\dfrac{7\pi}2;-\dfrac{5\pi}2\right]\)

Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.

а)

1. 2πn, n∈Z 2. π/6+2πn, n∈Z 3. π/4+2πn, n∈Z 4. π/3+2πn, n∈Z
5. π/2+2πn, n∈Z 6. 2π/3+2πn, n∈Z 7. 3π/4+2πn, n∈Z 8. 5π/6+2πn, n∈Z
9. π+2πn, n∈Z 10. -π/6+2πn, n∈Z 11. -π/4+2πn, n∈Z 12. -π/3+2πn, n∈Z
13. -π/2+2πn, n∈Z 14. -2π/3+2πn, n∈Z 15. -3π/4+2πn, n∈Z 16. -5π/6+2πn, n∈Z

б)

17. -7π/2 18. -10π/3 19. -13π/4 20. -19π/6
21. -3π 22. -17π/6 23. -11π/4 24. -8π/3
25. -5π/2      

В правильной треугольной пирамиде SABC сторона основания AB равна 16, высота SH равна 10. Точка K – середина бокового ребра SA. Плоскость, параллельная плоскости ABC, проходит через точку K и пересекает рёбра SB и SC в точках Q и P соответственно.
а) Докажите, что площадь четырехугольника BCPQ составляет 3/4 площади треугольника SBC.
б) Найдите объем пирамиды KBCPQ.

Решите неравенство \((4^x-5\cdot 2^x)^2-20(4^x-5\cdot2^x)\leqslant96\)

В июле 2025 года планируется взять кредит в банке на 8 лет. Условия его возврата таковы:
– в январе 2026, 2027, 2028 и 2029 годов долг возрастает на 20% по сравнению с концом предыдущего года;
– в январе 2030, 2031, 2032 и 2033 годов долг возрастает на 18% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплатить часть долга;
– в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года;
– к июлю 2033 года кредит должен быть полностью погашен.
Какую сумму планируется взять в кредит, сели общая сумма выплат после полного его погашения составит 1125 тысяч рублей?

Точки A, B, C, D и E лежат на окружности в указанном порядке, причём AE=ED=CD, а прямые AC и BE перпендикулярны. Отрезки AC и BD пересекаются в точке T.
а) Докажите, что прямая EC пересекает отрезок TD в его середине.
б) Найдите площадь треугольника ABT, если BD=6, AE=√6.

Найдите все значения параметра \(a\), при каждом из которых уравнение \(|x^2-a^2|=|x+a|\cdot\sqrt{x^2-4ax+5a}\) имеет ровно один корень.

На доске написано три различных натуральных числа. Второе число равно сумме цифр первого, а третье сумме цифр второго.
а) Может ли сумма этих числ быть равна 2022?
б) Может ли сумма этих чисел быть равна 2021?
в) В тройке чисел первое число трёхзначное, а третье равно 2. Сколько существует таких троек?

Введите ответ в форме строки "да;да;1234". Где ответы на пункты разделены ";", и первые два ответа с маленькой буквы.

Загрузка...