Сайт подготовки к экзаменам Uchus.online

Задачи ЕГЭ профиль

7. Задачи прикладного содержания (Задачи ЕГЭ профиль)

Сила тока \(I\) (в А) в электросети вычисляется по закону Ома: \(I=\dfrac{U}{R}\), где \(U\) - напряжение электросети (в В), \(R\) - сопротивление подключаемого электроприбора (в Ом). Электросеть прекращает работать, если сила тока превышает 5 А. Определите, какое наименьшее сопротивление может быть у электроприбора, подключаемого к электросети с напряжением 220 В, чтобы электросеть продолжала работать. Ответ дайте в омах.

К источнику с ЭДС \(ε=180\) В и внутренним сопротивлением \(r=1\) Ом хотят подключить нагрузку с сопротивлением \(R\) (в Ом). Напряжение (в В) на этой нагрузке вычисляется по формуле \(U=\dfrac{εR}{R+r}\). При каком значении сопротивления нагрузки напряжение на ней будет равно 170 В? Ответ дайте в омах.

Скейтбордист прыгает на стоящую на рельсах платформу со скоростью \(v=5\) м/с под острым углом к рельсам. От толчка платформа начинает двигаться со скоростью \(u=\dfrac{m\cdot v\cdot\cos{\alpha}}{m+M}\) (м/с), где \(m=70\) кг – масса скейтбордиста со скейтом, а \(M=280\) кг – масса платформы. Под каким максимальным углом \(\alpha\) нужно прыгать, чтобы разогнать платформу не менее чем до 0,5 м/с? Ответ дайте в градусах

Двигаясь со скоростью \(v=5\,м/с\), трактор тащит сани с силой \(F=100\,кН\), направленной под острым углом \(\alpha\) к горизонту. Мощность, развиваемая трактором, вычисляется по формуле \(N=Fv\cos\alpha\). Найдите, при каком угле \(\alpha\) (в градусах) эта мощность будет равна \(250 \,кВт\) (кВт - это кН∙м/с).

Плоский замкнутый контур площадью \(S=1{,}25\,м^2\) находится в магнитном поле, индукция которого равномерно возрастает. При этом согласно закону электромагнитной индукции Фарадея в контуре появляется ЭДС индукции, значение которой определяется формулой: \(ε_i=aS\cos{γ}\), где \(γ\) - острый угол между направлением магнитного поля и перпендикуляром к контуру, \(a=8\cdot 10^{-4}\,Тл/с\) - постоянная, \(S\,(м^2)\) - площадь замкнутого контура, находящегося в магнитном поле. При каком минимальном угле \(γ\) ЭДС индукции не будет превышать \(5\cdot 10^{-4}\,В\)? Ответ дайте в градусах

Трактор тащит сани с силой \(F=90\) кН, направленной под острым углом \(\alpha\) к горизонту. При скорости трактора \(v=6\) м/с мощность равна \(N=Fv\cos{a}\) (кВт). При каком максимальном угле \(\alpha\) эта мощность будет не менее 270 кВт? Ответ дайте в градусах.

В розетку электросети подключены приборы, общее сопротивление которых составляет \(R_1=56 \,Ом\). Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите наименьшее возможное сопротивление \(R_2\) этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями \(R_1\) и \(R_2\) их общее сопротивление вычисляется по формуле \(R_{общ} = \dfrac{R_1 R_2}{R_1 + R_2}\), а для нормального функционирования электросети общее сопротивление в ней должно быть не меньше 24 Ом. Ответ выразите в Омах.

Мяч бросили под углом \(\alpha\) к плоской горизонтальной поверхности земли. Время полета мяча (в секундах) определяется по формуле \(t=\dfrac{2v_0\sin\alpha}{g}\). При каком значении угла \(\alpha\) (в градусах) время полета составит 2,6 секунды, если мяч бросают с начальной скоростью \(v_0=13\, м/с\)? Считайте, что ускорение свободного падения \(g=10\, м/с^2\)

Для сматывания кабеля на заводе используют лебёдку, которая равноускоренно наматывает кабель на катушку. Угол, на который поворачивается катушка, изменяется со временем по закону \(\varphi=\omega t+\dfrac{\beta t^2}{2}\), где \(t\) – время в минутах, \(\omega=60°/мин\) – начальная угловая скорость вращения катушки, а \(\beta=6°/мин^2\) – угловое ускорение, с которым наматывается кабель. Рабочий должен проверить ход его намотки не позже того момента, когда угол намотки \(\varphi\) достигнет \(3375°\). Определите время после начала работы лебёдки, не позже которого рабочий должен проверить её работу. Ответ дайте в минутах.

Коэффициент полезного действия (КПД) некоторого двигателя определяется формулой \(\eta=\dfrac{T_1-T_2}{T_1}\cdot 100\%\), где \(T_1\) – температура нагревателя (в градусах Кельвина), \(T_2\) – температура холодильника (в градусах Кельвина). При какой минимальной температуре нагревателя \(T_1\) КПД этого двигателя будет не меньше 50%, если температура холодильника \(T_2=250 K\)? Ответ дайте в кельвинах.

Загрузка...
ВИДЕОКУРС по задачам ЕГЭ 1-11:
Открыть
Загрузка...