Сложные уравнения
а) Решите уравнение \(6^{x^2 - 4x} + 6^{x^2 - 4x -1} = 42\).
б) Найдите все корни этого уравнения, принадлежащие отрезку \([-2; 4]\).
а) Решите уравнение \(\dfrac{4}{\sin^2{\left(\frac{7\pi}{2}-x\right)}}-\dfrac{11}{\cos{x}}+6=0\)
б) Найдите все корни этого уравнения, принадлежащие промежутку \(\left[2\pi;\frac{7\pi}{2}\right]\)
Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.
а)
1. 2πn, n∈Z | 2. π/6+2πn, n∈Z | 3. π/4+2πn, n∈Z | 4. π/3+2πn, n∈Z |
5. π/2+2πn, n∈Z | 6. 2π/3+2πn, n∈Z | 7. 3π/4+2πn, n∈Z | 8. 5π/6+2πn, n∈Z |
9. π+2πn, n∈Z | 10. -π/6+2πn, n∈Z | 11. -π/4+2πn, n∈Z | 12. -π/3+2πn, n∈Z |
13. -π/2+2πn, n∈Z | 14. -2π/3+2πn, n∈Z | 15. -3π/4+2πn, n∈Z | 16. -5π/6+2πn, n∈Z |
б)
17. 2π | 18. 13π/6 | 19. 9π/4 | 20. 7π/3 |
21. 5π/2 | 22. 8π/3 | 23. 11π/4 | 24. 17π/6 |
25. 3π | 26. 19π/6 | 27. 13π/4 | 28. 10π/3 |
29. 7π/2 |
а) Решите уравнение \(\sin^2\bigg(\dfrac{x}{4}+\dfrac{\pi}{4}\bigg)\sin^2\bigg(\dfrac{x}{4}-\dfrac{\pi}{4}\bigg)=0,375\sin^2\bigg(-\dfrac{\pi}{4}\bigg)\).
б) Найдите все корни этого уравнения, принадлежащие отрезку \([-3\pi;\pi]\).
Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.
а)
1. 2πn, n∈Z | 2. π/6+2πn, n∈Z | 3. π/4+2πn, n∈Z | 4. π/3+2πn, n∈Z |
5. π/2+2πn, n∈Z | 6. 2π/3+2πn, n∈Z | 7. 3π/4+2πn, n∈Z | 8. 5π/6+2πn, n∈Z |
9. π+2πn, n∈Z | 10. -π/6+2πn, n∈Z | 11. -π/4+2πn, n∈Z | 12. -π/3+2πn, n∈Z |
13. -π/2+2πn, n∈Z | 14. -2π/3+2πn, n∈Z | 15. -3π/4+2πn, n∈Z | 16. -5π/6+2πn, n∈Z |
б)
17. -3π | 18. -8π/3 | 19. -7π/3 | 20. -2π |
21. -5π/3 | 22. -4π/3 | 23. -π | 24. -2π/3 |
25. -π/3 | 26. 0 | 27. π/3 | 28. 2π/3 |
29. π |
а) Решите уравнение \(24\cdot4^{x-0{,}5}-11\cdot2^{x+1}+6=0\)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-1; 1].
а) Решите уравнение \(\log_5{(x+3)}=\log_{25}(x^4)\)
б) Найдите все корни, принадлежащие отрезку \(\left[ \log_6{\dfrac13}; \log_4{32}\right]\)
а) Решите уравнение \(4\cdot25^{x+0{,}5}-60\cdot5^{x-1}+1=0\)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-3; -1].
а) Решите уравнение \(\log_{7}{(x+2)}=\log_{49}{(x^4)}\)
б) Найдите все корни этого уравнения, принадлежащие отрезку \(\left[\log_{6}{\dfrac{1}{7}};\log_{6}{35}\right]\)
Запишите сначала ответы на пункт а), затем через точку с запятой на пункт б). Ответы запишите без пробелов через точку с запятой по возрастанию, например: "-2;3;-2"
а) Решите уравнение \(2\log^2_{2}{(2\cos{x})}-9\log_{2}{(2\cos{x})}+4=0\)
б) Найдите все корни этого уравнения, принадлежащие отрезку \(\left[-2\pi;-\dfrac{\pi}{2}\right]\)
Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.
а)
1. 2πn, n∈Z | 2. π/6+2πn, n∈Z | 3. π/4+2πn, n∈Z | 4. π/3+2πn, n∈Z |
5. π/2+2πn, n∈Z | 6. 2π/3+2πn, n∈Z | 7. 3π/4+2πn, n∈Z | 8. 5π/6+2πn, n∈Z |
9. π+2πn, n∈Z | 10. -π/6+2πn, n∈Z | 11. -π/4+2πn, n∈Z | 12. -π/3+2πn, n∈Z |
13. -π/2+2πn, n∈Z | 14. -2π/3+2πn, n∈Z | 15. -3π/4+2πn, n∈Z | 16. -5π/6+2πn, n∈Z |
б)
17. -2π | 18. -11π/6 | 19. -7π/4 | 20. -5π/3 |
21. -3π/2 | 22. -4π/3 | 23. -5π/4 | 24. -7π/6 |
25. -π | 26. -5π/6 | 27. -3π/4 | 28. -2π/3 |
29. -π/2 |
а) Решите уравнение \(7\mathrm{tg\,}^2x - \dfrac{1}{\sin{\left(\dfrac{\pi}{2}+x\right)} } + 1 = 0 \).
б) Найдите все корни этого уравнения, принадлежащие промежутку \(\left[-\dfrac{5\pi}{2}; -\pi\right]\).
Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.
а)
1. 2πn, n∈Z | 2. π/6+2πn, n∈Z | 3. π/4+2πn, n∈Z | 4.π/3+2πn, n∈Z |
5. π/2+2πn, n∈Z | 6. 2π/3+2πn, n∈Z | 7. 3π/4+2πn, n∈Z | 8. 5π/6+2πn, n∈Z |
9. π+2πn, n∈Z | 10. -π/6+2πn, n∈Z | 11. -π/4+2πn, n∈Z | 12. -π/3+2πn, n∈Z |
13. -π/2+2πn, n∈Z | 14. -2π/3+2πn, n∈Z | 15. -3π/4+2πn, n∈Z | 16. -5π/6+2πn, n∈Z |
б)
17. -5π/2 | 18. -7π/3 | 19. -9π/4 | 20. -13π/6 |
21. -2π | 22. -11π/6 | 23. -7π/4 | 24. -5π/3 |
25. -3π/2 | 26. -4π/3 | 27. -5π/4 | 28. -7π/6 |
29. -π |
А) Решите уравнение \(27^x - 4 \cdot 3^{x+2} + 3^{5-x} = 0\).
Б) Укажите корни этого уравнения, принадлежащие отрезку \([\log_{7}{4};\log_{7}{16}]\).
В ответ запишите корни без пробелов через точку с запятой в порядке возрастания. Сначала на пункт А, затем на пункт Б. Например, "8;13;8"