Сайт подготовки к экзаменам Uchus.online

Задачи ЕГЭ профиль

Стереометрия

Дан куб \(ABCDA_1B_1C_1D_1\).
а) Постройте сечение куба плоскостью, проходящей через точки \(B\), \(A_1\) и \(D_1\)
б) Найдите угол между плоскостями \(BA_1C_1\) и \(BA_1D_1\)

Ребро \(SA\) пирамиды \(SABC\) перпендикулярно плоскости основания \(ABC\).

а) Докажите, что плоскость, проходящая через середины рёбер \(AB\), \(AC\) и \(SA\), отсекает от пирамиды \(SABC\) пирамиду, объём которой в 8 раз меньше объёма пирамиды\(SABC\).

б) Найдите расстояние от вершины\(A\) до этой плоскости, если\(SA=2\sqrt5\),\(AB=AC=10\),\(BC=4\sqrt5\).

Основанием пирамиды \(FABC\) является правильный треугольник \(ABC\) со стороной \(48\). Все боковые рёбра пирамиды равны \(40\). На рёбрах \(FB\) и \(FC\) отмечены соответственно точки \(K\) и \(N\) так, что \(FK=FN=10\). Через точки \(K\) и \(N\) проведена плоскость \(\alpha\), перпендикулярная плоскости \(ABC\).
а) Докажите, что плоскость \(\alpha\) делит медиану \(AM\) в отношении \(1:3\).
б) Найдите расстояние от точки \(C\) до плоскости \(\alpha\).

В правильной четырёхугольной пирамиде SABCD сторона основания АВ равна 4, а боковое ребро SA равно 5. На ребре SC отмечена точка K, причём SK:KC = 1:3. Плоскость \(\alpha\) содержит точку K и параллельна плоскости SAD.
а) Докажите, что сечение пирамиды SABCD плоскостью \(\alpha\) — трапеция.
б) Найдите объём пирамиды, вершиной которой является точка S, а основанием — сечение пирамиды SABCD плоскостью \(\alpha\).

В правильной треугольной усечённой пирамиде \(ABCA_1B_1C_1\) площадь нижнего основания \(ABC\) в четыре раза больше площади меньшего основания \(А_1B_1С_1.\) Через ребро \(AC\) проведена плоскость \(\alpha\), которая пересекает ребро \(BB_1\) в точке \(K\) и делит пирамиду на два многогранника равного объёма.

а) Докажите, что точка \(K\) делит ребро \(BB_1\) в отношении \(7:1\), считая от точки \(B\).

б) Найдите площадь сечения усечённой пирамиды плоскостью \(\alpha\), если высота пирамиды равна \(2\sqrt{2}\), а ребро меньшего основания равно \(2\sqrt{6}\).

В пирамиде \(ABCD\) ребра \(DA\), \(DB\) и \(DC\) попарно перпендикулярны, а \(AB=BC=AC=14\).
а) Докажите, что эта пирамида правильная.
б) На ребрах \(DA\) и \(DC\) отмечены точки \(M\) и \(N\) соответственно, причем \(DM:MA=DN:NC=6:1\). Найдите площадь сечения \(MNB\).

В правильной четырёхугольной пирамиде SABCD сторона основания AB равна 4, а боковое ребро SA равно 7. На рёбрах CD и SC отмечены точки N и K соответственно, причём DN:NC=SK:KC=1:3.Плоскость \(\alpha\) содержит прямую KN и параллельна прямой BC .
а) Докажите, что плоскость \(\alpha\) параллельна прямой SA.
б) Найдите угол между плоскостями \(\alpha\) и SBC .

В основании прямой треугольной призмы \(ABCA_1B_1C_1\) лежит равнобедренный треугольник \(ABC\) с равными сторонами \(AB\) и \(BC\). Точки \(K\) и \(M\) — середины рёбер \(A_1B_1\) и \(AC\) соответственно.

а) Докажите, что \(KM=KB\).

б) Найдите угол между прямой \(KM\) и плоскостью \(ABB_1\), если \(AB=8\), \(AC=6\) и \(AA_1=3\).

Основанием пирамиды SABCD является прямоугольник ABCD со сторонами AB=15 и BC=25. Все боковые рёбра пирамиды равны \(5\sqrt{17}\). На рёбрах AD и BC отмечены соответственно точки K и N так, что AK=CN=8. Через точки K и N проведена плоскость \(\alpha\), перпендикулярная ребру SB.
а) Докажите, что плоскость \(\alpha\) проходит через точку M – середину ребра SB.
б) Найдите расстояние между прямыми DS и KM.

Все рёбра правильной треугольной призмы \(ABCA_1B_1C_1\)имеют длину 6. Точки \(M\) и \(N\) - середины рёбер \(AA_1\) и \(A_1C_1\) соответственно.
а) Докажите, что прямые \(BM\) и \(MN\) перпендикулярны.
б) Найдите угол между плоскостями \(BMN\) и \(ABB_{1}\).

Загрузка...
ВИДЕОКУРС по задаче 14 ЕГЭ:
Открыть
Загрузка...