Сайт подготовки к экзаменам Uchus.online

Задачи ЕГЭ профиль

16. Планиметрия (Задачи ЕГЭ профиль)

Точка \(O\) — центр вписанной в треугольник \(ABC\) окружности. Прямая \(BO\) вторично пересекает описанную около этого треугольника окружность в точке \(E\).
а) Докажите, что углы \(\angle EOC = \angle ECO\).
б) Найдите площадь треугольника \(ACE\), если радиус описанной около треугольника \(ABC\) окружности равен \(6\sqrt{3}\), угол \(ABC = 60°\).

В равнобедренной трапеции \(ABCD\) основание \(AD\) в три раза больше основания \(BC\).

а) Докажите, что высота \(CH\) трапеции разбивает основание \(AD\) на отрезки, один из которых вдвое больше другого.

б) Найдите расстояние от вершины \(C\) до середины диагонали \(BD\), если \(AD=18\) и \(AC=4\sqrt{13}\)

В выпуклом четырёхугольнике ABCD известны стороны и диагональ: AB = 3, BC = CD = 5, AD = 8, AC = 7.
а) Докажите, что вокруг этого четырёхугольника можно описать окружность.
б) Найдите BD.

На гипотенузе AB и катетах BC и AC прямоугольного треугольника ABC отмечены точки М, N и К соответственно, причём прямая NK параллельна прямой AB и BM=BN=KN/2. Точка Р - середина отрезка KN.

а) Докажите, что четырёхугольник BCPM - равнобедренная трапеция.

б) Найдите площадь треугольника ABC, если BM=2 и угол BCM=30°

Точка \(О\) — центр вписанной в треугольник \(ABC\) окружности. Прямая ВО вторично пересекает описанную около этого треугольника окружность в точке \(Р\).

а) Докажите, что \(\angle POA = \angle PAO\).

б) Найдите площадь треугольника \(АРО\), если радиус описанной около треугольника \(ABC\) окружности равен \(6\), углы \(BAC = 75°\), \(ABC = 60°\).

В треугольнике ABC все стороны различны. Прямая, содержащая высоту BH треугольника ABC, вторично пересекает описанную около этого треугольника окружность в точке F. Отрезок BD - диаметр этой окружности.
а) Докажите, что AD=CF.
б) Найдите DF, если радиус описанной около треугольника ABC окружности равен 12, угол BAC=35°, угол ACB=65°.

В равнобедренной трапеции \(ABCD\) основание \(AD\) в три раза больше основания \(BC\).

а) Докажите, что высота \(CH\) трапеции разбивает основание \(AD\) на отрезки, один из которых вдвое больше другого.

б) Найдите расстояние от вершины \(C\) до середины диагонали \(BD\), если \(AD=36\) и \(AC=26\).

В треугольнике АВС все стороны различны. Прямая, содержащая высоту ВН треугольника АВС, вторично пересекает описанную около этого треугольника окружность в точке K. Отрезок BN-диаметр этой окружности.
а) Докажите, что AC и KN параллельны.
б) Найдите расстояние от точки N до прямой AC, если радиус описанной около треугольника ABC окружности равен 6√6, ∠BAC=30°, ∠ABC=105°

На гипотенузе \(AB\) и катетах \(BC\) и \(AC\) прямоугольного треугольника \(ABC\) отмечены точки \(M\), \(N\) и \(K\) соответственно, причём прямая \(NK\) параллельна прямой \(AB\) и \(BM=BN=\dfrac{1}{2}KN\). Точка \(Р\) - середина отрезка \(KN\).

а) Докажите, что четырёхугольник \(BCPM\) - равнобедренная трапеция.

б) Найдите площадь треугольника \(ABC\), если \(BM=1\) и \(\angle BCM=15°\)

Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC = CD.
а) Докажите, что AB : BC = AP : PD.
б) Найдите площадь треугольника COD, где O - центр окружности, вписанной в треугольник ABD, если дополнительно известно, что BD - диаметр описанной около четырёхугольника ABCD окружности, AB = \(5\), а BC = \(5\sqrt{2}\).

Загрузка...
ВИДЕОКУРС по задаче 16 ЕГЭ:
Открыть
Загрузка...