Геометрические задачи на доказательство
Точка K – середина боковой стороны CD трапеции ABCD. Докажите, что площадь треугольника KAB равна половине площади трапеции.
Дан правильный восьмиугольник. Докажите, что если его вершины последовательно соединить отрезками через одну, то получится квадрат.
В параллелограмме \(ABCD\) точка \(E\) - середина стороны \(AB\). Известно, что \(EC = ED\). Докажите, что данный параллелограмм - прямоугольник.
В треугольнике \(ABC\) с тупым углом \(ABC\) проведены высоты \(AA_1\) и \(CC_1\) . Докажите, что треугольники \(A_1BC_1\) и \(ABC\) подобны.
Одно основание равнобедренной трапеции в два раза меньше другого и равно её боковой стороне. Докажите, что одна из диагоналей трапеции перпендикулярна другой её боковой стороне
В окружности через середину O хорды AC проведена хорда BD так, что дуги AB и CD равны. Докажите, что O — середина хорды BD.
В треугольнике \(ABC\) с тупым углом \(ACB\) проведены высоты \(AA_1\) и \(BB_1\). Докажите, что треугольники \(A_1CB_1\) и \(ACB\) подобны.
В равностороннем треугольнике \(ABC\) точки \(M\), \(N\), \(K\) — середины сторон \(АВ\), \(ВС\), \(СА\) соответственно. Докажите, что треугольник \(MNK\) — равносторонний.
Сторона AB параллелограмма ABCD вдвое больше стороны AD. Точка К — середина стороны AB. Докажите, что DK — биссектриса угла ADC.
Докажите, что если окружность касается сторон AB и AC треугольника ABC в точках B и C, и биссектриса AD угла BAC пересекает меньшую из двух дуг BC в точке N, то CN — биссектриса угла ACB.