Задачи ОГЭ
- 1. Практическая задача I
- 2. Практическая задача II
- 3. Практическая задача III
- 4. Практическая задача IV
- 5. Практическая задача V
- 6. Вычисления
- 7. Координатная прямая. Числовые неравенства
- 8. Действительные числа. Степени. Сравнения
- 9. Уравнения
- 10. Теория вероятностей
- 11. Графики функций
- 12. Расчеты по формулам
- 13. Неравенства
- 14. Прогрессии
- 15. Треугольники
- 16. Окружности
- 17. Четырехугольники и многоугольники
- 18. Фигуры на квадратной решетке
- 19. Анализ геометрических утверждений
- 20. Уравнения, выражения, неравенства
- 21. Сложные текстовые задачи
- 22. Построение графиков
- 23. Геометрические задачи на вычисление
- 24. Геометрические задачи на доказательство
- 25. Сложные геометрические задачи
24. Геометрические задачи на доказательство (Задачи ОГЭ)
Докажите, что медиана треугольника делит его на два треугольника, площади которых равны.
В равностороннем треугольнике \(ABC\) точки \(M\), \(N\), \(K\) — середины сторон \(АВ\), \(ВС\), \(СА\) соответственно. Докажите, что треугольник \(MNK\) — равносторонний.
В окружности через середину O хорды AC проведена хорда BD так, что дуги AB и CD равны. Докажите, что O — середина хорды BD.
Окружности с центрами в точках Aи Bпересекаются в точках C и D, причём точки Aи Bлежат по одну сторону от прямой CD. Докажите, что CD ⊥ AB.
В параллелограмме \(ABCD\) точка \(E\) - середина стороны \(AB\). Известно, что \(EC = ED\). Докажите, что данный параллелограмм - прямоугольник.
В треугольнике \(ABC\) с тупым углом \(ACB\) проведены высоты \(AA_1\) и \(BB_1\). Докажите, что треугольники \(A_1CB_1\) и \(ACB\) подобны.
Окружности с центрами в точках P иQ не имеют общих точек. Внутрення общая касательная к этим окружностям делит отрезок, соединяющий их центры, в отношении a : b. Докажите, что диаметры этих окружностей относятся как a : b.
Внутри параллелограмма ABCD выбрали произвольную точку E. Докажите, что сумма площадей треугольников BEC и AED равна половине площади параллелограмма.
Известно, что около четырёхугольника ABCD можно описать окружность, и что продолжения сторон AD и BC пересекаются в точке K. Докажите, что треугольники KAB и KCD подобны.
Точка K – середина боковой стороны CD трапеции ABCD. Докажите, что площадь треугольника KAB равна половине площади трапеции.