Задачи ОГЭ
Скрыть/развернуть все

« Геометрические задачи на доказательство»


№4803

Точка K – середина боковой стороны CD трапеции ABCD. Докажите, что площадь треугольника KAB равна половине площади трапеции.

№3853

Дан правильный восьмиугольник. Докажите, что если его вершины последовательно соединить отрезками через одну, то получится квадрат.

№4676

Одно основание равнобедренной трапеции в два раза меньше другого и равно её боковой стороне. Докажите, что одна из диагоналей трапеции перпендикулярна другой её боковой стороне

№4167

В параллелограмме \(ABCD\) точка \(E\) - середина стороны \(AB\). Известно, что \(EC = ED\). Докажите, что данный параллелограмм - прямоугольник.

№4718

В треугольнике \(ABC\) с тупым углом \(ABC\) проведены высоты \(AA_1\) и \(CC_1\) . Докажите, что треугольники \(A_1BC_1\) и \(ABC\) подобны.

№3162

В тре­уголь­ни­ке \(ABC\) с тупым углом \(ACB\) про­ве­де­ны вы­со­ты \(AA_1\) и \(BB_1\). Докажите, что тре­уголь­ни­ки \(A_1CB_1\) и \(ACB\) подобны.

№3322

В окруж­но­сти через се­ре­ди­ну O хорды AC про­ве­де­на хорда BD так, что дуги AB и CD равны. Докажите, что O — середина хорды BD.

№2704

Докажите, что если окружность касается сторон AB и AC треугольника ABC в точках B и C, и биссектриса AD угла BAC пересекает меньшую из двух дуг BC в точке N, то CN — биссектриса угла ACB.

№3817

В равностороннем треугольнике \(ABC\) точки \(M\), \(N\), \(K\) — середины сторон \(АВ\), \(ВС\), \(СА\) соответственно. Докажите, что треугольник \(MNK\) — равносторонний.

№5366

Сторона AB параллелограмма ABCD вдвое больше стороны AD. Точка К — середина стороны AB. Докажите, что DK — биссектриса угла ADC.

2020 ©, ИП Иванов Дмитрий Михайлович