Задачи ОГЭ
- 1. Практическая задача 1-5
- 2. Вычисления с дробями
- 3. Координатная прямая. Числовые неравенства
- 4. Степени и корни
- 5. Уравнения
- 6. Теория вероятностей
- 7. Функции и графики
- 8. Расчеты по формулам
- 9. Неравенства
- 10. Прогрессии
- 11. Треугольники
- 12. Окружности
- 13. Четырехугольники и многоугольники
- 14. Фигуры на квадратной решетке
- 15. Анализ геометрических утверждений
- 16. Уравнения, выражения, неравенства
- 17. Сложные текстовые задачи
- 18. Построение графиков
- 19. Геометрические задачи на вычисление
- 20. Геометрические задачи на доказательство
- 21. Сложные геометрические задачи
20. Геометрические задачи на доказательство (Задачи ОГЭ)
В равностороннем треугольнике \(ABC\) точки \(M\), \(N\), \(K\) — середины сторон \(АВ\), \(ВС\), \(СА\) соответственно. Докажите, что треугольник \(MNK\) — равносторонний.
Через точку \(O\) пересечения диагоналей параллелограмма \(ABCD\) проведена прямая, пересекающая стороны \(AB\) и \(CD\) в точках \(E\) и \(F\) соответственно. Докажите, что \(AE = CF\).
Основания BC и AD трапеции ABCD равны соответственно 3 и 12, BD = 6. Докажите, что треугольники CBD и BDA подобны.
Известно, что около четырёхугольника ABCD можно описать окружность, и что продолжения сторон AD и BC пересекаются в точке K. Докажите, что треугольники KAB и KCD подобны.
В параллелограмме ABCD точка K — середина стороны CD. Известно, что AK=BK. Докажите, что данный параллелограмм — прямоугольник.
На средней линии трапеции ABCD с основаниями AD и BC выбрали произвольную точку F. Докажите, что сумма площадей треугольников BFC и AFD равна половине площади трапеции.
Биссектрисы углов \(A\) и \(B\) параллелограмма \(ABCD\) пересекаются в точке \(F\) стороны \(CD\). Докажите, что \(F\) - середина \(CD\).
В треугольнике \(ABC\) с тупым углом \(ACB\) проведены высоты \(AA_1\) и \(BB_1\). Докажите, что треугольники \(A_1CB_1\) и \(ACB\) подобны.
В параллелограмме \(ABCD\) точка \(E\) - середина стороны \(AB\). Известно, что \(EC = ED\). Докажите, что данный параллелограмм - прямоугольник.
В треугольнике \(ABC\) с тупым углом \(ABC\) проведены высоты \(AA_1\) и \(CC_1\) . Докажите, что треугольники \(A_1BC_1\) и \(ABC\) подобны.