Задачи ЕГЭ профиль
- 1. Планиметрия
- 2. Стереометрия
- 3. Классическое определение вероятности
- 4. Теория вероятностей
- 5. Уравнения
- 6. Нахождение значений выражений
- 7. Производная
- 8. Задачи прикладного содержания
- 9. Текстовые задачи
- 10. Функции и графики
- 11. Исследование функций
- 12. Сложные уравнения
- 13. Стереометрия
- 14. Неравенства
- 15. Экономические задачи
- 16. Планиметрия
- 17. Параметры
- 18. Теория чисел
17. Параметры (Задачи ЕГЭ профиль)
Найдите все значения \(a\), при каждом из которых уравнение \(\dfrac{9x^2-a^2}{x^2+8x+16-a^2}=0\) имеет ровно два различных корня.
Найдите все значения параметра \(a\), при которых система
\(\begin{cases} x^2+y^2+5=2(2x+y)\\a^2+ax+2ay=5\end{cases}\)
имеет решение.
Запишите ответы по возрастанию через точку с запятой без пробелов.
Найдите все значения параметра \(a\). при которых уравнение \((x^2+2x+2a)^2=5x^4+5(x+a)^2\) имеет ровно одно решение на отрезке [0;2].
Найдите все значение параметра \(a\), при каждом из которых система неравенств \(\begin{cases} ax \geqslant 2\\\sqrt{x - 1} > a\\3x \leqslant 2a+11 \end{cases}\) имеет хотя бы одно решение на отрезке \(x \in [3;4]\).
Найдите все положительные значения \(a\), при каждом из которых система
\(\begin{cases}
(|x|-5)^{2}+(y-4)^{2}=9\\
(x+2)^{2}+y^{2}=a^{2}
\end{cases}\)
имеет единственное решение.
Найдите все значения \(a\), при каждом из которых уравнение \(\dfrac{x^2+x+a}{x^2-2x+a^2+6a}=0\) имеет ровно два различных корня.
Найдите все значения \(a\), при каждом из которых система \(\begin{cases} y^2 - x - 2 = |x^2 - x - 2|\\ x + y = a\end{cases}\) имеет более двух решений.
Найдите все значения параметра \( a\), при которых неравенство \( 225^x-2(a-3)15^x+2a+2<0 \) не имеет решений.
Найдите все значения параметра \(a\), при которых все корни уравнения \(ax^{2}+2(2-a)x+1=0\) удовлетворяют условия \(|x| < 1\).
Найдите все положительные значения параметра \(a\), при которых система уравнений \(\begin{cases}
(|x|-6)^2+(y-12)^2=4\\
(x+1)^2+y^2=a^2
\end{cases}\) имеет единственное решение.