Задачи ЕГЭ профиль

Теория чисел


№6624

Для каждого натурального числа \(n\) обозначим через \(n!\) произведение первых \(n\) натуральных чисел (\(1! = 1)\).

а) Существует ли такое натуральное число \(n\), что десятичная запись числа \(n!\) оканчивается ровно 9 нулями?

б) Существует ли такое натуральное число \(n\), что десятичная запись числа \(n!\) оканчивается ровно 23 нулями?

в) Сколько существует натуральных чисел \(n\), меньших 100, для каждого из которых десятичная запись числа \(n!\cdot(100-n)!\) оканчивается ровно 23 нулями?

Введите ответ в форме строки "да;нет;1234". Где ответы на пункты разделены ";", и первый ответ с маленькой буквы.

№6560

Петя участвовал в викторине по истории. За каждый правильный ответ участнику начисляется 8 баллов, за каждый неверный – списывается 8 баллов, за отсутствие ответа списывается 3 балла. По результатам викторины Петя набрал 35 баллов.
а) На сколько вопросов Петя не дал ответа, если в викторине было 30 вопросов?
б) На сколько вопросов Петя не дал ответа, если в викторине было 35 вопросов?
в) На сколько вопросов Петя ответил правильно, если в викторине было 33 вопроса?

Введите ответ в форме строки "21;43;7", где ответы на пункты разделены ";".

№6564

Оля участвовала в викторине по истории. За каждый правильный ответ участнику начисляется 8 баллов, за каждый неверный – списывается 8 баллов, за отсутствие ответа списывается 3 балла. По результатам викторины Оля набрала 35 баллов.

а) На сколько вопросов Оля ответила правильно, если в викторине было 24 вопроса?

б) На сколько вопросов Оля не дала ответа, если в викторине было 25 вопросов?

в) На сколько вопросов Оля ответила неверно, если в викторине было 37 вопросов?

Введите ответ в форме строки "21;43;7", где ответы на пункты разделены ";".

№7078

Сторона квадрата на 3 см длиннее ширины прямоугольника, площади этих фигур равны, а все стороны – целые числа.
а) Может ли ширина прямоугольника быть равной 8?
б) Может ли длина прямоугольника быть равной 16?
в) Найдите все возможные варианты таких пар прямоугольников и квадратов.

Введите ответ в форме строки "да;да;1;2;3;4". Где ответы на пункты разделены ";", первые два ответа с маленькой буквы, а в пункте В перечислите возможные длины стороны квадрата по возрастанию через точку с запятой.

№5275

Известно, что в кошельке лежало n монет, каждая из которых могла иметь достоинство 2, 5 или 10 рублей. Аня сделала все свои покупки, расплатившись за каждую покупку отдельно без сдачи только этими монетами, потратив при этом все монеты из кошелька.
а) Могли ли все её покупки состоять из блокнота за 56 рублей и ручки за 29 рублей, если n=14?
б) Могли ли все её покупки состоять из чашки чая за 10 рублей, сырка за 15 рублей и пирожка за 20 рублей, если n=19?
в) Какое наименьшее количество пятирублёвых монет могло быть в кошельке, если Аня купила только альбом за 85 рублей и n=24?

Введите ответ в форме строки "да;да;1234". Где ответы на пункты разделены ";", и первые два ответа с маленькой буквы.

№7084

Сторона квадрата на 2 см длиннее ширины прямоугольника, площади этих фигур равны, а все стороны – целые числа.
а) Может ли ширина прямоугольника быть равной 6?
б) Может ли длина прямоугольника быть равной 9?
в) Найдите все возможные варианты таких пар прямоугольников и квадратов.

Введите ответ в форме строки "да;да;1;2;3;4". Где ответы на пункты разделены ";", первые два ответа с маленькой буквы, а в пункте В перечислите возможные длины стороны квадрата по возрастанию через точку с запятой.

№5402

Известно, что в кошельке лежало nмонет, каждая из которых могла иметь достоинство 2, 5 или 10 рублей. Таня сделала все свои покупки, расплатившись за каждую покупку отдельно без сдачи только этими монетами, потратив при этом все монеты из кошелька.

а) Могли ли все её покупки состоять из блокнота за 64 рубля и ручки за 31 рубль, если n=16?

б) Могли ли все её покупки состоять из стакана компота за 15 рублей, сырка за 20 рублей и булочки за 25 рублей, если n=26?

в) Какое наименьшее количество пятирублёвых монет могло быть в кошельке, если Таня купила только альбом за 96 рублей и n=19?

Введите ответ в форме строки "да;да;1234". Где ответы на пункты разделены ";", и первые два ответа с маленькой буквы.

№5476

Все члены конечной последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 14 раз больше, либо в 14 раз меньше предыдущего. Сумма всех членов последовательности равна 7424.
а) Может ли последовательность состоять из двух членов?
б) Может ли последовательность состоять из трёх членов?
в) Какое наибольшее количество членов может быть в последовательности?

Введите ответ в форме строки "да;да;1234". Где ответы на пункты разделены ";", и первые два ответа с маленькой буквы.

№4725

В ящике лежит 58 овощей, масса каждого из которых выражается целым числом граммов. В ящике есть хотя бы два овоща различной массы, а средняя масса всех овощей равна 1000 г. Средняя масса овощей, масса каждого из которых меньше 1000 г, равна 976 г. Средняя масса овощей, масса каждого из которых больше 1000 г, равна 1036 г.
а) Могло ли в ящике оказаться поровну овощей массой меньше 1000 г и овощей массой больше 1000 г?
б) Могло ли в ящике оказаться ровно 12 овощей, масса каждого из которых равна 1000 г?
в) Какую наименьшую массу может иметь овощ в этом ящике?

Введите ответ в форме строки "да;да;1234". Где ответы на пункты разделены ";", и первые два ответа с маленькой буквы.

№5256

Издательство на выставку привезло несколько книг для продажи (каждую книгу привезли в единственном экземпляре). Цена каждой книги -натуральное число рублей. Если цена книги меньше 75 рублей, на неё приклеивают бирку «выгодно». Однако до открытия выставки цену каждой книги увеличили на 15 рублей, из-за чего количество книг с бирками «выгодно» уменьшилось.
а) Могла ли уменьшиться средняя цена книг с биркой «выгодно» после открытия выставки по сравнению со средней ценой книг с биркой «выгодно» до открытия выставки?
б) Могла ли уменьшиться средняя цена книг без бирки «выгодно» после открытия выставки по сравнению со средней ценой книг без бирки «выгодно» до открытия выставки?
в) Известно, что первоначально средняя цена всех книг составляла 80 рубля, средняя цена книг с биркой «выгодно» составляла 56 рублей, а средняя цена книг без бирки — 152 рублей. После увеличения цены средняя цена книг с биркой «выгодно» составила 70 рублей, а средняя цена книг без бирки -145 рублей. При каком наименьшем количестве книг такое возможно?

Введите ответ в форме строки "да;да;1234". Где ответы на пункты разделены ";", и первые два ответа с маленькой буквы.

2021 ©, ИП Иванов Дмитрий Михайлович