Задачи ОГЭ
- 1. Практическая задача I
- 2. Практическая задача II
- 3. Практическая задача III
- 4. Практическая задача IV
- 5. Практическая задача V
- 6. Вычисления
- 7. Координатная прямая. Числовые неравенства
- 8. Действительные числа. Степени. Сравнения
- 9. Уравнения
- 10. Теория вероятностей
- 11. Графики функций
- 12. Расчеты по формулам
- 13. Неравенства
- 14. Прогрессии
- 15. Треугольники
- 16. Окружности
- 17. Четырехугольники и многоугольники
- 18. Фигуры на квадратной решетке
- 19. Анализ геометрических утверждений
- 20. Уравнения, выражения, неравенства
- 21. Сложные текстовые задачи
- 22. Построение графиков
- 23. Геометрические задачи на вычисление
- 24. Геометрические задачи на доказательство
- 25. Сложные геометрические задачи
23. Геометрические задачи на вычисление (Задачи ОГЭ)
В прямоугольном треугольнике ABC с прямым углом C известны катеты: AC=6, BC=8. Найдите медиану CK этого треугольника.
В прямоугольном треугольнике \(ABC\) с прямым углом \(C\) известны катеты: \(AC = 6\), \(BC = 8\). Найдите медиану \(CK\) этого треугольника.
В трапецию, сумма длин боковых сторон которой равна 24, вписана окружность. Найдите длину средней линии трапеции.
В треугольнике ABC угол A равен 68°, угол B равен 67°. Сторона AB равна 3√2. Найдите радиус описанной около треугольника ABC окружности.
В трапеции \(ABCD\) основание \(AD\) вдвое больше основания \(BC\) и вдвое больше боковой стороны \(CD\). Угол \(ADC\) равен 60, сторона \(AB\) равна 2. Найдите площадь трапеции.
Две сосны растут на расстоянии 30 м одна от другой. Высота одной сосны 26 м, а другой - 10 м. Найдите расстояние (в метрах) между их верхушками.
Углы B и C треугольника ABC равны соответственно 61° и 89°. Найдите BC, если радиус окружности, описанной около треугольника ABC, равен 10.
Углы \(B\) и \(C\) треугольника \(ABC\) равны соответственно 63° и 87°. Найдите \(BC\), если радиус окружности, описанной около треугольника \(ABC\), равен 11.
Найдите радиус окружности, описанной около треугольника со сторонами 5, 6, 9.
Прямая, параллельная стороне \(AC\) треугольника \(ABC\), пересекает стороны \(AB\) и \(BC\) в точках \(K\) и \(M\) соответственно. Найдите \(AC\), если \(BK : KA = 3 : 7\), \(KM = 12\).