36 вариантов ЕГЭ 2021
Меню курса
14 вариант ЕГЭ Ященко с решением
Налог на доходы составляет \(13\%\) от заработной платы. После удержания налога на доходы Мария Константиновна получила \(15660\) рублей. Сколько рублей составляет заработная плата Марии Константиновны?
На рисунке показана средняя цена свинца во все месяцы 2017 и 2018 годов. По горизонтали указаны месяцы, по вертикали — цена тонны свинца в долларах США. Для наглядности точки соединены отрезками.
Определите по рисунку цену тонны свинца в июне 2018 года.
Игральную кость бросают дважды. Найдите вероятность того, что произведение выпавших очков делится на 3. Ответ округлите до тысячных.
Найдите корень уравнения \(\sqrt{2x-3}=x-3 \). Если уравнение имеет более одного корня, в ответе запишите наименьший из корней.
Два угла вписанного в окружность четырёхугольника равны 112° и 125°. Найдите больший из оставшихся углов. Ответ дайте в градусах.
На рисунке изображён график \(y=f'(x)\) производной функции \(f(x)\), определённой на интервале \((-2; 11)\). Найдите количество точек, в которых касательная к графику функции \(f(x)\) параллельна прямой \(y=-2x-5\) или совпадает с ней.
Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём конуса равен 19. Найдите объём шара.
Найдите \(\log_{a}{(a^4b^3)}\), если \(\log_{a}{b}=4\)
При сближении источника и приёмника звуковых сигналов, движущихся в некоторой среде по прямой навстречу друг другу, частота звукового сигнала, регистрируемого приёмником, не совпадает с частотой исходного сигнала \(f_0=130\,Гц\) и определяется следующим выражением: \(f=f_0\dfrac{c+u}{c-v}\,(Гц)\), где \(c\) - скорость распространения сигнала в среде (в м/с), а \(u=15\) м/с и \(v=9\)м/с - скорости приёмника и источника относительно среды соответственно. При какой максимальной скорости \(c\) (в м/с) распространения сигнала в среде частота сигнала в приёмнике \(f\) будет не менее \(135\, Гц\)?
Из одной точки круговой трассы, длина которой равна 25 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 114 км/ч, и через 30 минут после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.
Найдите наименьшее значение функции \(y=(1-x)e^{2-x}\) на отрезке \([0{,}5; 5]\).
а) Решите уравнение \(\log_{\frac{1}{3}}\left({2\sin^2x-3\cos2x+6}\right)=-2\)
б) Найдите все корни этого уравнения, принадлежащие отрезку \(\left[-\dfrac{7\pi}{2};-2\pi\right] \)
Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.
а)
1. 2πn, n∈Z | 2. π/6+2πn, n∈Z | 3. π/4+2πn, n∈Z | 4.π/3+2πn, n∈Z |
5. π/2+2πn, n∈Z | 6. 2π/3+2πn, n∈Z | 7. 3π/4+2πn, n∈Z | 8. 5π/6+2πn, n∈Z |
9. π+2πn, n∈Z | 10. -π/6+2πn, n∈Z | 11. -π/4+2πn, n∈Z | 12. -π/3+2πn, n∈Z |
13. -π/2+2πn, n∈Z | 14. -2π/3+2πn, n∈Z | 15. -3π/4+2πn, n∈Z | 16. -5π/6+2πn, n∈Z |
б)
17. -7π/2 | 18. -10π/3 | 19. -13π/4 | 20. -19π/6 |
21. -3π | 22. -17π/6 | 23. -11π/4 | 24. -8π/3 |
25. -5π/2 | 26. -7π/3 | 27. -9π/4 | 28. -13π/6 |
29. -2π |
В правильной треугольной усечённой пирамиде \(ABCA_1B_1C_1\) площадь нижнего основания \(ABC\) в девять раз больше площади меньшего основания \(A_1B_1C_1\). Через ребро \(AB\) проведена плоскость \(\alpha\), которая пересекает ребро \(CC_1\) в точке \(N\) и делит пирамиду на два многогранника равного объёма.
а) Докажите, что точка \(N\) делит ребро \(CC_1\) в отношении \(5 : 13\), считая от точки \(C_1\).
б) Найдите площадь сечения усечённой пирамиды плоскостью \(\alpha\), если высота пирамиды равна 13, а ребро меньшего основания равно 3.
Решите неравенство \(3\cdot25^{x+0{,}5}+4^{2x+1{,}5}\leqslant22\cdot20^{x}\)
Окружность проходит через вершины \(A\), \(B\) и \(D\) параллелограмма \(ABCD\), пересекает сторону \(BC\) в точках \(B\) и \(M\), а также пересекает продолжение стороны \(CD\) за точку \(D\) в точке \(N\).
а) Докажите, что \(AM=AN\)
б) Найдите отношение \(CD:DN\), если \(AB:BC=2:3\), а \(\cos\angle BAD=0{,}7\)
Ответ запишите в виде несократимого отношения без пробелов, например "4:13".
В июле планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:
- каждый январь долг возрастает на 16 % по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплатить часть долга, равную 2,523 млн рублей.
Сколько миллионов рублей было взято в банке, если известно, что он был полностью погашен двумя равными платежами (то есть за два года)?
Найдите все значения параметра \(a\), при которых система уравнений
\(\begin{cases}\dfrac{(y-\sqrt{10-x^2})\left((x+5)^2+(y+5)^2-10(x+7{,}5)+x^2-y^2+5\right)}{\sqrt{x^2-1}}=0\\y=ax+a-1\end{cases}\)
имеет одно решение.
В школах №1 и №2 учащиеся писали тест. Из каждой школы тест писали по крайней мере 2 учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом. После этого один из учащихся, писавших тест, перешёл из школы №1 в школу №2, а средние баллы за тест были пересчитаны в обеих школах.
а) Мог ли средний балл в школе №1 уменьшиться в 10 раз?
б) Средний балл в школе №1 уменьшился на 10%, средний балл в школе №2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе №2 равняться 7?
в) Средний балл в школе №1 уменьшился на 10%, средний балл в школе №2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе №2.
Введите ответ в форме строки "да;да;1234". Где ответы на пункты разделены ";", и первые два ответа с маленькой буквы.