Задачи ОГЭ
- 1. Практическая задача 1-5
- 2. См. раздел 1
- 3. См. раздел 1
- 4. См. раздел 1
- 5. См. раздел 1
- 6. Вычисления с дробями
- 7. Координатная прямая. Числовые неравенства
- 8. Степени и корни
- 9. Уравнения
- 10. Теория вероятностей
- 11. Функции и графики
- 12. Расчеты по формулам
- 13. Неравенства
- 14. Прогрессии
- 15. Треугольники
- 16. Окружности
- 17. Четырехугольники и многоугольники
- 18. Фигуры на клетчатой бумаге
- 19. Анализ геометрических утверждений
- 20. Уравнения, выражения, неравенства
- 21. Сложные текстовые задачи
- 22. Построение графиков
- 23. Геометрические задачи на вычисление
- 24. Геометрические задачи на доказательство
- 25. Сложные геометрические задачи
23.3. Окружности (Задачи ОГЭ)
Углы \(B\) и \(C\) треугольника \(ABC\) равны соответственно 71° и 79°. Найдите \(BC\), если радиус окружности, описанной около треугольника \(ABC\), равен 8.
Отрезки \(AB\) и \(CD\) являются хордами окружности. Найдите расстояние от центра окружности до хорды \(CD\), если \(AB = 24 \), \(CD = 32\), а расстояние от центра окружности до хорды \(AB\) равно 16.
В трапецию, сумма длин боковых сторон которой равна 24, вписана окружность. Найдите длину средней линии трапеции.
Углы \(B\) и \(C\) треугольника \(ABC\) равны соответственно \(71^{\circ}\) и \(79^{\circ}\). Найдите \(BC\), если радиус окружности, описанной около треугольника \(ABC\), равен \(8\).
Найдите радиус окружности, описанной около треугольника со сторонами 5, 6, 9.
Углы B и C треугольника ABC равны соответственно 61° и 89°. Найдите BC, если радиус окружности, описанной около треугольника ABC, равен 10.
Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP, если AK = 18, а сторона AC в 1,2 раза больше стороны BC.
В параллелограмм вписана окружность. Найдите периметр параллелограмма, если одна из его сторон равна 6.
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:4:11. Найдите радиус окружности, если меньшая из сторон равна 14.
Окружность с центром на стороне \(AC\) треугольника \(ABC\) проходит через вершину \(C\) и касается прямой \(AB\) в точке \(B\). Найдите \(AC\), если диаметр окружности равен 8, а \(AB = 3\).