Задачи ОГЭ
- 1. Практическая задача 1-5
- 2. См. раздел 1
- 3. См. раздел 1
- 4. См. раздел 1
- 5. См. раздел 1
- 6. Вычисления с дробями
- 7. Координатная прямая. Числовые неравенства
- 8. Степени и корни
- 9. Уравнения
- 10. Теория вероятностей
- 11. Функции и графики
- 12. Расчеты по формулам
- 13. Неравенства
- 14. Прогрессии
- 15. Треугольники
- 16. Окружности
- 17. Четырехугольники и многоугольники
- 18. Фигуры на клетчатой бумаге
- 19. Анализ геометрических утверждений
- 20. Уравнения, выражения, неравенства
- 21. Сложные текстовые задачи
- 22. Построение графиков
- 23. Геометрические задачи на вычисление
- 24. Геометрические задачи на доказательство
- 25. Сложные геометрические задачи
24.2. Четырёхугольники (Задачи ОГЭ)
Через точку \(O\) пересечения диагоналей параллелограмма \(ABCD\) проведена прямая, пересекающая стороны \(AB\) и \(CD\) в точках \(E\) и \(F\) соответственно. Докажите, что \(AE = CF\).
В параллелограмме \(ABCD\) точка \(E\) - середина стороны \(AB\). Известно, что \(EC = ED\). Докажите, что данный параллелограмм - прямоугольник.
В параллелограмме ABCD точка K — середина стороны CD. Известно, что AK=BK. Докажите, что данный параллелограмм — прямоугольник.
Биссектрисы углов \(A\) и \(B\) параллелограмма \(ABCD\) пересекаются в точке \(F\) стороны \(CD\). Докажите, что \(F\) - середина \(CD\).
Одно основание равнобедренной трапеции в два раза меньше другого и равно её боковой стороне. Докажите, что одна из диагоналей трапеции перпендикулярна другой её боковой стороне