Сайт подготовки к экзаменам Uchus.online

Задачи ОГЭ

24.2. Четырёхугольники (Задачи ОГЭ)

Через точку \(O\) пересечения диагоналей параллелограмма \(ABCD\) проведена прямая, пересекающая стороны \(AB\) и \(CD\) в точках \(E\) и \(F\) соответственно. Докажите, что \(AE = CF\).

В параллелограмме \(ABCD\) точка \(E\) - середина стороны \(AB\). Известно, что \(EC = ED\). Докажите, что данный параллелограмм - прямоугольник.

В параллелограмме ABCD точка K — середина стороны CD. Известно, что AK=BK. Докажите, что данный параллелограмм — прямоугольник.

Биссектрисы углов \(A\) и \(B\) параллелограмма \(ABCD\) пересекаются в точке \(F\) стороны \(CD\). Докажите, что \(F\) - середина \(CD\).

Одно основание равнобедренной трапеции в два раза меньше другого и равно её боковой стороне. Докажите, что одна из диагоналей трапеции перпендикулярна другой её боковой стороне

Загрузка...
ВИДЕОКУРС по задачам 20-22 ОГЭ:
Открыть
Загрузка...