Задачи ОГЭ
- 1. Практическая задача 1-5
- 2. Вычисления с дробями
- 3. Координатная прямая. Числовые неравенства
- 4. Степени и корни
- 5. Уравнения
- 6. Теория вероятностей
- 7. Функции и графики
- 8. Расчеты по формулам
- 9. Неравенства
- 10. Прогрессии
- 11. Треугольники
- 12. Окружности
- 13. Четырехугольники и многоугольники
- 14. Фигуры на квадратной решетке
- 15. Анализ геометрических утверждений
- 16. Уравнения, выражения, неравенства
- 17. Сложные текстовые задачи
- 18. Построение графиков
- 19. Геометрические задачи на вычисление
- 20. Геометрические задачи на доказательство
- 21. Сложные геометрические задачи
Задача №1012
Площадь четырёхугольника можно вычислить по формуле\( S=\dfrac{d_1 d_2\sin a}{2}\), где \(d_1\) и \(d_2\) - длины диагоналей четырёхугольника, \(a\) — угол между диагоналями. Пользуясь этой формулой найдите длину диагонали \(d_1\), если\(d_2=7\), \(\sin a=\dfrac{2}{7}\), а \(S=4\)