Задачи ЕГЭ профиль
- 1. Планиметрия
- 2. Векторы
- 3. Стереометрия
- 4. Классическое определение вероятности
- 5. Теория вероятностей
- 6. Уравнения
- 7. Нахождение значений выражений
- 8. Производная
- 9. Задачи прикладного содержания
- 10. Текстовые задачи
- 11. Графики функций
- 12. Исследование функций
- 13. Сложные уравнения
- 14. Стереометрия
- 15. Неравенства
- 16. Экономические задачи
- 17. Планиметрия
- 18. Параметры
- 19. Теория чисел
Задача №12018
Есть 60 карточек, на каждой из которых написано натуральное число больше 1. Все числа различные. На обратной стороне каждой карточки ставят цветовую отметку: если число делится на 3 – красную, если на 4 – синюю, если на 5 – зелёную. Получилось так, что на каждой карточке ровно две цветовые отметки.
а) Какое наибольшее количество карточек может быть с числами меньше 200?
б) Получилось, что на 20 карточках есть синяя и зелёная отметки, на 20 карточках есть синяя и красная отметки, на 20 карточках есть красная и зелёная отметки. Найдите наименьшее возможное значение наибольшего числа среди чисел, указанных на карточках.
в) Получилось, что на 45 карточках синяя отметка. Найдите наименьшее возможное значение наибольшего числа среди указанных на карточках.
Введите ответ в форме строки "21;43;7", где ответы на пункты разделены ";"