Задачи ЕГЭ профиль
- 1. Планиметрия
- 2. Стереометрия
- 3. Классическое определение вероятности
- 4. Теория вероятностей
- 5. Уравнения
- 6. Нахождение значений выражений
- 7. Производная
- 8. Задачи прикладного содержания
- 9. Текстовые задачи
- 10. Функции и графики
- 11. Исследование функций
- 12. Сложные уравнения
- 13. Стереометрия
- 14. Неравенства
- 15. Экономические задачи
- 16. Планиметрия
- 17. Параметры
- 18. Теория чисел
Задача №398
Скейтбордист прыгает на стоящую на рельсах платформу, со скоростью \(v= 3{,}6\, м/с\) под острым углом \(\alpha\) к рельсам. От толчка платформа начинает ехать со скоростью \(u=\dfrac{m}{m+M}\cdot v\cdot \cos \alpha\) (м/с), где \(m=70\, кг\) − масса скейтбордиста со скейтом, а \(M= 350 \,кг\) − масса платформы. Под каким максимальным углом \(\alpha\) (в градусах) нужно прыгать, чтобы разогнать платформу не менее чем до \(0{,}3 \,м/с\)?
Подпишись на ютуб канал
Подписаться