Задачи ЕГЭ профиль
- 1. Планиметрия
- 2. Векторы
- 3. Стереометрия
- 4. Классическое определение вероятности
- 5. Теория вероятностей
- 6. Уравнения
- 7. Нахождение значений выражений
- 8. Производная
- 9. Задачи прикладного содержания
- 10. Текстовые задачи
- 11. Графики функций
- 12. Исследование функций
- 13. Сложные уравнения
- 14. Стереометрия
- 15. Неравенства
- 16. Экономические задачи
- 17. Планиметрия
- 18. Параметры
- 19. Теория чисел
Задача №7843
Известно, что \(a\), \(b\), \(c\), \(d\), \(e\) и \(f\) — это различные, расставленные в некотором, возможно ином, порядке числа 2, 3, 4, 5, 6 и 16.
а) Может ли выполняться равенство \( \dfrac{a}{b}+\dfrac{c}{d}+\dfrac{e}{f}=6 \)?
б) Может ли выполняться равенство \( \dfrac{a}{b}+\dfrac{c}{d}+\dfrac{e}{f}=\dfrac{961}{240} \)?
в) Какое наименьшее значение может принимать сумма \( \dfrac{a}{b}+\dfrac{c}{d}+\dfrac{e}{f} \)?
Введите ответ в форме строки "да;да;12:34". Где ответы на пункты разделены ";", первые два ответа с маленькой буквы, в третьем несократимая дробь через двоеточие ":"
Подпишись на ютуб канал
Подписаться